

RANDOM PASSWORD GENERATOR
CYS-401 PROJECT

 BY: Mansour Albader

AUGUST 3, 2024

MANSOUR ALBADER
221110092

1 | P a g e

Contents
Introduction ... 2

Risks and threats ... 2

Password strength ... 2

Conclusion ... 2

Existing Methods ... 3

Previous Methods .. 3

Substitute Methods ... 3

Security Incidents and Vulnerabilities .. 3

• Data breaches: ... 3

• Password reuse .. 3

• Phishing attacks .. 3

Implementation & requirements ... 4

Windows Installation steps: ... 4

Linux Installation steps: ... 4

Source Code .. 6

1) algorithm.py .. 6

a) Library’s .. 6

b) PasswordGeneratorApp class .. 6

c) Generate_password class .. 7

2) RPGTool.py ... 8

a) Libraries .. 8

b) Run the tool ... 8

Full source code algorithm.py .. 9

Full source code RPGTool.py .. 11

2 | P a g e

Introduction

In today's interconnected digital landscape, cybersecurity plays a critical role in safeguarding

sensitive information and protecting against unauthorized access. One fundamental aspect of

cybersecurity is ensuring the strength and integrity of passwords. Random password generator, it

helps create strong and unique passwords that are hard to crack using brute force attacks. By

combining different types of characters like letters, numbers, and symbols, and varying the

length of the password, random password generators greatly improve security of the password by

using random characters.

Risks and threats

Security risks and threats. Weak passwords pose a security risk, as they are vulnerable to various

types of attacks such as brute force attacks and dictionary attacks. These attacks aim to exploit

vulnerabilities in password strength and gain access to user accounts, leading to unauthorized

access.

Password strength

The strength of a password is determined by its complexity and randomness. Strong passwords

are created using a mix of uppercase and lowercase letters, numbers, and symbols, making them

harder to guess or crack through automated or manual methods.

Conclusion
In conclusion, random password generation is an essential technique of cybersecurity strategies,

helping to mitigate common security risks, threats, attacks, and vulnerabilities associated with

password-based authentication. By adopting robust password generation practices, individuals

and organizations can enhance their resilience against cyber threats and safeguard sensitive

information effectively.

3 | P a g e

Existing Methods

There are various online websites available that offer random password generation functionality.

These websites may provide additional features such as password generator. All that to help

users to generate a strong password that is hard to guess, by adding random characters, it will be

complex for attacker to use brute force tools. In additional, many operating system offers a built-

in software program that generate random passwords, also password manager software that help

user to store their random password that is so hard to remember and allow users to generate a

random password.

Previous Methods

Many organizations was enforce password policies requiring a mix of uppercase and lowercase

letters only, any other characters will be optionally, to enhance password strength. This method

makes the password easy to guess. Most of users always using their personal data in their

password such as date of birth or their names. Before this was enough but, today, attackers build

brute force tools that can easily guess password these passwords by using wordlists of passwords

or try to find data that might users use in their passwords.

Substitute Methods

Today, passwords in not enough to secure users accounts, attackers find users passwords in

multiple data bases that has been breaches and shared in dark web. Organization finds substitute

methods to ensure secure users accounts, such as tow factor authentication that allow users to

receive a code that has been generated for one time, to use it while signing in after using their

password.

Security Incidents and Vulnerabilities

• Data breaches: Numerous high-profile data breaches have occurred due to weak or

compromised passwords, leading to unauthorized access to sensitive information.

• Password reuse: Users often reuse passwords across multiple accounts, increasing the risk

of widespread security breaches if one account is compromised.

• Phishing attacks: Attackers frequently use phishing emails to trick users into disclosing

their passwords, exploiting human error rather than technical vulnerabilities.

4 | P a g e

Implementation & requirements

Random password generator tool (RPGTool) is a software program has been programed using

python language. RPGTool generate random passwords using random character chosen by the

user such as (LowerCaseLatters, UpperCaseLatters, Numbers and Symbols).

Windows Installation steps:

1. Visit https://github.com/MSecurity0/Random-Password-Generator

2. Download the files

3. Open cmd

4. cd dirName

5.
6. Locate pip file in device c://example/pip.exe

7. pip.exe install -r requirments.txt

8.
9. Run the tool using python

10.

Linux Installation steps:

1. Open terminal

2. git clone https://github.com/MSecurity0/Random-Password-Generator

3. cd ‘Random Password Generator’

4. pip install -r requirments.txt

5. python RGPTool.py

https://github.com/MSecurity0/Random-Password-Generator
https://github.com/MSecurity0/Random-Password-Generator

5 | P a g e

As it shows in the image, there is tow labels (length and quantity) and 4 choices

(LowerCaseLatters, UpperCaseLatters, Numbers and Symbols). User can generate up to 100

passwords with length between 6-60 using the RGPTool.

(Source code explanation)

(Full source code algorthim.py)

(Full source code RPGTool.py)

6 | P a g e

 Source Code

1) algorithm.py

a) Library’s
import os.path

import customtkinter as ctk

import random

import string

import tkinter as tk

from tkinter import messagebox

from PIL import Image

from customtkinter import CTkLabel

import webbrowser

(Libraries needed to run the code has been imported in the top of the source code in algorithm.py)

b) PasswordGeneratorApp class

i) GUI
class PasswordGeneratorApp:

 def __init__(self, master):

 self.master = master

 master.geometry("600x600")

 master.title("Random Password Generator")

(This part of the code shows the startup resolution and the title of the tool in algorithm.py)

ii) PSU Logo
self.image_path=os.path.join(os.path.dirname(__file__),"images/logo.jpg")

self.image =

ctk.CTkImage(light_image=Image.open(self.image_path),size=(150,50))

self.image_label = CTkLabel(master=master, image=self.image,text='')

self.image_label.pack(side='top',pady=10)

iii) Password length entry and choose label
self.entry_length = ctk.CTkEntry(master,placeholder_text='Enter length of

password (6-60)',width=200)

self.entry_length.pack(side='top',pady=10)

self.label_options = ctk.CTkLabel(master, text="Choose at least 1 options:

")

self.label_options.pack(side='top',pady=10)

iv) Checkbox for (lowercase, uppercase, numbers and symbols)
self.lowercase_var = tk.BooleanVar()

self.lowercase_checkbox = ctk.CTkCheckBox(master,corner_radius=10, text="Lowercase [abcd]", variable=self.lowercase_var)

self.lowercase_checkbox.pack(side='top', pady=10)

self.uppercase_var = tk.BooleanVar()

self.uppercase_checkbox = ctk.CTkCheckBox(master,corner_radius=10, text="Uppercase [ABCD]", variable=self.uppercase_var)

self.uppercase_checkbox.pack(side='top',pady=10)

self.include_numbers_var = tk.BooleanVar()

self.include_numbers_checkbox = ctk.CTkCheckBox(master, corner_radius=10,text="Include numbers [1234]",

variable=self.include_numbers_var)

self.include_numbers_checkbox.pack(side='top',pady=10)

self.include_symbols_var = tk.BooleanVar()

self.include_symbols_checkbox = ctk.CTkCheckBox(master,corner_radius=10, text="Include symbols [@#$!]",

variable=self.include_symbols_var)

self.include_symbols_checkbox.pack(side='top',pady=10)

self.entry_quantity = ctk.CTkEntry(master,placeholder_text='Enter quantity of password (1-100)',width=200)

self.entry_quantity.pack(side='top',pady=10)

7 | P a g e

v) Button to generate the password
self.generate_button = ctk.CTkButton(master,corner_radius=32,

width=400,height=40,text="Generate Password(s)",

command=self.generate_passwords)

self.generate_button.pack(side='top',pady=10)

vi) Tag and GitHub button
self.label_image2 = ctk.CTkLabel(master, text_color='gold',

 text="This project Has been made by:

Mansour Albader (221110092)")

self.label_image2.pack(side='top', pady=10)

self.Gitimage_path = os.path.join(os.path.dirname(__file__),

"images/git.png")

self.Gitimage = ctk.CTkImage(light_image=Image.open(self.Gitimage_path),

size=(100, 50))

self.git_button =

ctk.CTkButton(master,fg_color='white',image=self.Gitimage,hover=None,

corner_radius=32, width=40,height=40,text="", command=self.openGit)

self.git_button.pack(side='top',pady=10)

c) Generate_password class

i) Random small letters, capital letters and digits (using string lib)
def generate_passwords(self):

 sLetters = string.ascii_lowercase

 cLetters = string.ascii_uppercase

 digit = string.digits

ii) Defining all variables of random characters
length = int(self.entry_length.get())

include_lowercase = self.lowercase_var.get()

include_uppercase = self.uppercase_var.get()

include_numbers = self.include_numbers_var.get()

include_symbols = self.include_symbols_var.get()

quantity = int(self.entry_quantity.get())

iii) Generating algorithm
characters = ''

if include_lowercase:

 characters += sLetters

if include_uppercase:

 characters += cLetters

if include_numbers:

 characters += digit

if include_symbols:

 characters += string.punctuation

passwords = []

if 1 <= quantity <= 100:

 i = 0

 for _ in range(quantity):

 i += 1

 if 6 <= length <= 60:

 password = ''.join(random.choice(characters) for _ in range(length))

 passwords.append(str(i)+': '+password+'\n-----------------')

 else:

 s = "password length must be between 6 and 60"

 passwords.append(s)

else:

 s = "quantity length must be between 1 and 100"

 passwords.append(s)

8 | P a g e

iv) Pop-up windows for the passwords generated or errors
password_str = "\n".join(passwords)

messagebox.showinfo("Generated Passwords", password_str)

v) Open GitHub definition [Tag and GitHub]
def openGit(self):

 return webbrowser.open('https://github.com/MSecurity0/Random-Password-

Generator')

2) RPGTool.py

a) Libraries
import algorithm

import customtkinter as ctk

b) Run the tool
root = ctk.CTk()

app = algorithm.PasswordGeneratorApp(root)

root.mainloop()

9 | P a g e

Full source code algorithm.py

import os.path

import customtkinter as ctk

import random

import string

import tkinter as tk

from tkinter import messagebox

from PIL import Image

from customtkinter import CTkLabel

import webbrowser

class PasswordGeneratorApp:

 def __init__(self, master):

 self.master = master

 master.geometry("600x600")

 master.title("Random Password Generator")

 self.image_path = os.path.join(os.path.dirname(__file__),

"images/logo.jpg")

 self.image = ctk.CTkImage(light_image=

Image.open(self.image_path),size=(150,50))

 self.image_label = CTkLabel(master=master, image=self.image,text='')

 self.image_label.pack(side='top',pady=10)

 self.entry_length = ctk.CTkEntry(master,placeholder_text='Enter

length of password (6-60)',width=200)

 self.entry_length.pack(side='top',pady=10)

 self.label_options = ctk.CTkLabel(master, text="Choose at least 1

options: ")

 self.label_options.pack(side='top',pady=10)

 self.lowercase_var = tk.BooleanVar()

 self.lowercase_checkbox = ctk.CTkCheckBox(master,corner_radius=10,

text="Lowercase [abcd] ", variable=self.lowercase_var)

 self.lowercase_checkbox.pack(side='top', pady=10)

 self.uppercase_var = tk.BooleanVar()

 self.uppercase_checkbox = ctk.CTkCheckBox(master,corner_radius=10,

text="Uppercase [ABCD] ", variable=self.uppercase_var)

 self.uppercase_checkbox.pack(side='top',pady=10)

 self.include_numbers_var = tk.BooleanVar()

 self.include_numbers_checkbox = ctk.CTkCheckBox(master,

corner_radius=10,text="Include numbers [1234]",

variable=self.include_numbers_var)

 self.include_numbers_checkbox.pack(side='top',pady=10)

 self.include_symbols_var = tk.BooleanVar()

 self.include_symbols_checkbox =

ctk.CTkCheckBox(master,corner_radius=10, text="Include symbols [@#$!]",

variable=self.include_symbols_var)

 self.include_symbols_checkbox.pack(side='top',pady=10)

10 | P a g e

 self.entry_quantity = ctk.CTkEntry(master,placeholder_text='Enter

quantity of password (1-100)',width=200)

 self.entry_quantity.pack(side='top',pady=10)

 self.generate_button = ctk.CTkButton(master,corner_radius=32,

width=400,height=40,text="Generate Password(s)",

command=self.generate_passwords)

 self.generate_button.pack(side='top',pady=10)

 self.label_image2 = ctk.CTkLabel(master, text_color='gold',

 text="This project Has been made by:

Mansour Albader (221110092)")

 self.label_image2.pack(side='top', pady=10)

 self.Gitimage_path = os.path.join(os.path.dirname(__file__),

"images/git.png")

 self.Gitimage =

ctk.CTkImage(light_image=Image.open(self.Gitimage_path), size=(100, 50))

 self.git_button =

ctk.CTkButton(master,fg_color='white',image=self.Gitimage,hover=None,

corner_radius=32, width=40,height=40,text="", command=self.openGit)

 self.git_button.pack(side='top',pady=10)

 def generate_passwords(self):

 sLetters = string.ascii_lowercase

 cLetters = string.ascii_uppercase

 digit = string.digits

 length = int(self.entry_length.get())

 include_lowercase = self.lowercase_var.get()

 include_uppercase = self.uppercase_var.get()

 include_numbers = self.include_numbers_var.get()

 include_symbols = self.include_symbols_var.get()

 quantity = int(self.entry_quantity.get())

 characters = ''

 if include_lowercase:

 characters += sLetters

 if include_uppercase:

 characters += cLetters

 if include_numbers:

 characters += digit

 if include_symbols:

 characters += string.punctuation

11 | P a g e

 passwords = []

 if 1 <= quantity <= 100:

 i = 0

 for _ in range(quantity):

 i += 1

 if 6 <= length <= 60:

 password = ''.join(random.choice(characters) for _ in range(length))

 passwords.append(str(i)+': '+password+'\n-----------------')

 else:

 s = "password length must be between 6 and 60"

 passwords.append(s)

 break

 else:

 s = "quantity length must be between 1 and 100"

 passwords.append(s)

 password_str = "\n".join(passwords)

 messagebox.showinfo("Generated Passwords", password_str)

 def openGit(self):

 return webbrowser.open('https://github.com/MSecurity0/Random-Password-Generator')

Full source code RPGTool.py
import algorithm

import customtkinter as ctk

root = ctk.CTk()

app = algorithm.PasswordGeneratorApp(root)

root.mainloop()

